开源模型汇总
1. deepseek
| Model | #Total Params | #Activated Params | Context Length |
|---|---|---|---|
| DeepSeek-V3-Base | 671B | 37B | 128K |
| DeepSeek-V3 | 671B | 37B | 128K |
采用MOE(Mixture-of-Experts,混合专家)架构,大模型有671B参数,但是实际每次推理只使用37B的参数
DeepSeek-R1 Model
| Model | #Total Params | #Activated Params | Context Length | Download |
|---|---|---|---|---|
| DeepSeek-R1-Zero | 671B | 37B | 128K | 🤗 HuggingFace |
| DeepSeek-R1 | 671B | 37B | 128K | 🤗 HuggingFace |
DeepSeek-R1-Distill Models
| Model | Base Model | Download |
|---|---|---|
| DeepSeek-R1-Distill-Qwen-1.5B | Qwen2.5-Math-1.5B | 🤗 HuggingFace |
| DeepSeek-R1-Distill-Qwen-7B | Qwen2.5-Math-7B | 🤗 HuggingFace |
| DeepSeek-R1-Distill-Llama-8B | Llama-3.1-8B | 🤗 HuggingFace |
| DeepSeek-R1-Distill-Qwen-14B | Qwen2.5-14B | 🤗 HuggingFace |
| DeepSeek-R1-Distill-Qwen-32B | Qwen2.5-32B | 🤗 HuggingFace |
| DeepSeek-R1-Distill-Llama-70B | Llama-3.3-70B-Instruct | 🤗 HuggingFace |
商业友好,允许免费商用
2. Google Gemma
3. Mistral & Mixtral
4. kimi-k2
| Architecture | Mixture-of-Experts (MoE) |
|---|---|
| Total Parameters | 1T |
| Activated Parameters | 32B |
| Number of Layers (Dense layer included) | 61 |
| Number of Dense Layers | 1 |
| Attention Hidden Dimension | 7168 |
| MoE Hidden Dimension (per Expert) | 2048 |
| Number of Attention Heads | 64 |
| Number of Experts | 384 |
| Selected Experts per Token | 8 |
| Number of Shared Experts | 1 |
| Vocabulary Size | 160K |
| Context Length | 128K |
| Attention Mechanism | MLA |
| Activation Function | SwiGLU |
| 遵循宽松的MIT协议,做了如下修改 |
- 触发条件(满足其一即可):
- 你的商业产品或服务月活跃用户(MAU)超过 1 亿;
- 或者你的商业产品或服务月收入超过 2000 万美元(或等值货币)。
- 强制义务: 如果达到上述规模,你必须在产品或服务的用户界面(UI)显著位置展示 “Kimi K2” 字样。
5. Qwen
| Model | Release Date | Max Length | System Prompt Enhancement | # of Pretrained Tokens | Minimum GPU Memory Usage of Finetuning (Q-Lora) | Minimum GPU Usage of Generating 2048 Tokens (Int4) | Tool Usage |
|---|---|---|---|---|---|---|---|
| Qwen-1.8B | 23.11.30 | 32K | ✅ | 2.2T | 5.8GB | 2.9GB | ✅ |
| Qwen-7B | 23.08.03 | 32K | ❎ | 2.4T | 11.5GB | 8.2GB | ✅ |
| Qwen-14B | 23.09.25 | 8K | ❎ | 3.0T | 18.7GB | 13.0GB | ✅ |
| Qwen-72B | 23.11.30 | 32K | ✅ | 3.0T | 61.4GB | 48.9GB | ✅ |
商用友好
6. Meta Llama
| Model | Launch date | Model sizes | Context Length | Tokenizer | Acceptable use policy | License | Model Card |
|---|---|---|---|---|---|---|---|
| Llama 2 | 7/18/2023 | 7B, 13B, 70B | 4K | Sentencepiece | Use Policy | License | Model Card |
| Llama 3 | 4/18/2024 | 8B, 70B | 8K | TikToken-based | Use Policy | License | Model Card |
| Llama 3.1 | 7/23/2024 | 8B, 70B, 405B | 128K | TikToken-based | Use Policy | License | Model Card |
| Llama 3.2 | 9/25/2024 | 1B, 3B | 128K | TikToken-based | Use Policy | License | Model Card |
| Llama 3.2-Vision | 9/25/2024 | 11B, 90B | 128K | TikToken-based | Use Policy | License | Model Card |
| Llama 3.3 | 12/04/2024 | 70B | 128K | TikToken-based | Use Policy | License | Model Card |
| Llama 4 | 4/5/2025 | Scout-17B-16E, Maverick-17B-128E | 10M, 1M | TikToken-based | Use Policy | License | Model Card |
license受限,月活用户超过7亿不允许使用。Additional Commercial Terms. If, on the Llama 4 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights